Catalytic Autothermal Reforming

Theodore Krause, Jennifer Mawdsley, Cecile Rossignol, John Kopasz, Daniel Applegate, Magali Ferrandon, J. David Carter, and Michael Krumpelt

Electrochemical Technology Program
Argonne National Laboratory

2002 National Laboratory R&D Meeting
DOE Fuel Cells for Transportation Program
Denver, CO
May 9-10,2002

Objectives

• To reduce the cost and improve the catalytic activity of our ATR catalysts in order to reduce the size and cost of the fuel processor and improve start-up time

• To develop a better understanding of reaction mechanisms in order to optimize the catalyst performance (activity, durability, sulfurtolerance)

Approach

- Synthesize materials that meet ANL selection criteria and DOE cost goals.
- Determine the H₂, CO, CO₂, CH₄ and C_nH_m yields for various fuels versus temperature and space velocity.
- Work with catalyst manufacturers to optimize the performance of structured forms of the catalysts.
- Conduct fundamental studies to gain insight into the reaction mechanisms.

Reviewers' Comments from FY2001 Annual Review

• Put more emphasis on explaining kinetics – relative roles of partial oxidation and steam reforming not explained.

• Get additional people (lab/universities) working in this area examining the fundamentals.

• Test best catalyst formulations with real world gasoline that contains sulfur.

Industrial/Academic Collaboration

Industrial

- Süd-Chemie, Inc.
 - Catalyst manufactured under non-exclusive licensing agreement
 - CRADA to optimize POX catalysts
- H2Fuel
 - CRADA for the commercialization of the reformer

Academic

- University of Alabama, Tuscaloosa
 - Characterization studies (SEM, TEM, XPS) of POX catalyst
 - Mechanistic and kinetic studies of POX catalyst
- University of Puerto Rico, Mayagüez
 - Determine reaction condition boundaries for carbon formation

For Monoliths, Rh and Ni are More Active than Pt For Isooctane Reforming at 700°C

Conditions: Isooctane fuel, 700°C, $O_2/C = 0.5$, $H_2O/C = 1.2$

Argonne Electrochemical Technology Program

Rh Monolith Has Better Long-Term Performance For Reforming Benchmark Fuel

Conditions: Benchmark Fuel, $O_2/C = 0.44$, $H_2O/C = 1.6$, $GHSV = 9000 \text{ hr}^{-1}$

• Benzene and toluene were present in the reformate produced by Rh and Pt. For Rh, benzene concentration was ~200-300 ppm and toluene concentration was <~100 ppm (both on a dry-basis).

Short-Term Tests Suggest that Ni May Reduce Aromatic Breakthrough

- Rh No toluene or xylenes detected at 13,800/h
- Ni No benzene, toluene, or xylenes detected at 13,800/h

Conditions: Benchmark Fuel, 700°C, $O_2/C = 0.44$, $H_2O/C = 1.6$

Metals Exhibit Different Oxidation and Reforming Activity

Conditions: Isobutane fuel, $O_2/C = 0.5$, $H_2O/C = 1.0$, Total Flow = 50 mL/min (Balance He), GHSV = $\sim 50,000 \text{ h}^{-1}$ Argonne Electrochemical Technology Program

Part II: Perovskite ATR Catalysts

- Potential Benefit is lower cost—no noble metals
- What is a Perovskite?
 - General formula: ABO₃
 - B cation smaller than A cation
 - Example: LaCoO₃
- Why Perovskites as ATR Catalysts?
 - Many perovskite oxides are good oxygen ion conductor and/or good mixed electronic conductors
 - La_{1-x}Sr_x(Mn,Fe,Co)O₃ shown to be comparable to Pt/Al₂O₃ for methane oxidation at low temperatures (<600°C)

- A-site
- B-site
- Oxygen

B-site Substitution Stabilizes LaNiO₃ and LaCoO₃ under ATR Conditions

- Substituting at least 50% of the Ni or Co with selected transition metals stabilizes the perovskite structure under ATR conditions
- However, when the amount of Ni or Co is reduced, performance degrades

	Moles H ₂ /Mole C ₈ H ₁₈ Feed		
Catalyst	700°C	650°C	600°C
LaNiO ₃	14.3	12.7	10.8
B-site modified LaNiO ₃	12.6	11.7	10.0

A-site Substitution Improves H₂ Yield

	Moles H ₂ /Mole C ₈ H ₁₈ Feed	
Catalyst	700°C	600°C
LaNiO ₃	14.3	10.8
B-site modified LaNiO ₃	12.6	10.0
A,B-site modified LaNiO ₃ (I)	13.1	13.5
A,B-site modified LaNiO ₃ (II)	13.2	11.3

Stabilized Ni Perovskite Catalyst Maintains Activity Over 300 Hours

Conditions: A,B-site modified LaNiO₃ catalyst, Benchmark Fuel, 700°C

Future Plans

- Continue work to improve the performance of catalyst supported on structured forms
- Continue work to improve the performance of stabilized perovskite catalysts
- Work to improve the sulfur tolerance of non-Pt catalysts
- Continue work with academic collaborators to gain better insight into reaction mechanisms

Timeline

May 1995: Started screening for hydrocarbon reforming catalysts

Apr 1997: Demonstrated conversion of gasoline

Nov 1997: Demonstrated catalyst performance in engineering

scale reactor

May 1999: Initiated licensing discussions with Süd-Chemie, Inc.

May 2000: Demonstrated 1,000 hour life

Aug 2000: US Patent (6,110,861) awarded

Oct 2000: CRADA w/H2Fuel to commercialize reformer

Feb 2002: CRADA w/Süd-Chemie to optimize catalyst

performance.